American Pharmacy Purchasing Alliance Receives A4M Partnership of the Month Award

The American Pharmacy Purchasing Alliance (APPA) is excited and humbled to be recognized as the A4M Partner of the Month. This comes at an exciting time as APPA is officially deploying their suite of fully managed pharmacy success solutions to the market. Pharmacy owners will enjoy a wealth of profitable turn-key benefits which are included in membership: New Patient Acquisition, Diversified Clinical Services, Population Health Management & Protected Group Purchasing with DIR Fee Insurance.

The American Pharmacy Purchasing Alliance has teamed up with industry leaders such as A4M, AmerisourceBergen, SureCost, PremierRX, MicroMerchant Systems, RXVIP & More to deploy an end-to-end solution engaging Payors, Providers, Patients, Pharmacies, Wholesalers & Manufacturers. The goal: to create a mobile integrated care team focused on delivering better patient care & lower costs.

APPA is a community of pharmacy owners, pharmaceutical experts and professionals dedicated towards the recognition and advancement of the specialized industry pharmacy, patient care and pharmaceutical purchasing. At APPA, we strive to represent a collective and unmistakable voice.

“Pharmacy Owners have fought an uphill battle for the last five years and deserve some much-needed relief from costly DIR Fees. Our fully managed Population Health model provides Independent Pharmacies with the clinical resources they need to be successful in today’s value-based care environment. APPA is much more than coaching. We’re actually doing the work.”  ~Nathan Purcell – Chief Executive Officer

To learn more and join visit www.joinappa.com

Reversing Age-Related Impairment and Immunity

While the average life-expectancy for humans continues to increase, a longer life span has been tied to an uptick in age-related disease and impairment across the globe. As a result of a declining immune system, the growing elderly population is more prone to infectious diseases – including influenza and COVID-19. Additionally, this group is commonly affected by age-related frailty, which has a significant negative impact on quality of life. The high level of care and involvement required to maintain the health of these patients has the potential to bear a growing burden on the healthcare system which is part of the reason underlying research efforts in the field of human longevity.

The current body of knowledge suggests the role of chronic low-grade inflammation in the biological aging process and development of age-related diseases; scientific evidence implicates that the presence of inflammation in the body accelerates aging. Hoping to uncover more information about additional factors that may contribute to an accelerated process and potential methods of reversing them, a team of researchers from the Department for BioMedical Research at the University of Bern conducted a study with findings published in Nature Metabolism.

Age-Related Frailty and Immunity

Under Bernese guidance, Dr. Mario Noti and Dr. Alexander Eggel aimed to identify new approaches to improving health-span in an ever-increasing aging population by focusing on adipose tissue eosinophils (ATEs) present in humans and mice. These immune cells found in visceral adipose tissue, otherwise known as belly fat, play an essential role in regulating inflammation and could be used to reverse aging processes; these cells are important in the control of obesity-related inflammation and metabolic disease as they are responsible for maintaining local immune homeostasis. Increasing age is tied to a decrease in eosinophils in adipose tissue and an increase in pro-inflammatory macrophages – turning belly fat into a source of pro-inflammatory activity.

Role of Eosinophils in Chronic Inflammation

The study’s authors demonstrated that visceral adipose tissue contributed to the development of chronic low-grade inflammation. They found that ATEs undergo major age-related changes in distribution and function associated with impaired adipose tissue homeostasis and systemic low-grade inflammation in human subjects as well as mice. However, exposure to a young systemic environment  was able to partially restore ATE distribution in aged subjects by reducing adipose tissue inflammation.

“In different experimental approaches, we were able to show that transfers of eosinophils from young mice into aged recipients resolved not only local but also systemic low-grade inflammation,” the researchers told ScienceDaily. ”In these experiments, we observed that transferred eosinophils were selectively homing into adipose tissue.”

Using an adoptive transfer or eosinophils from young mice to aged subjects, researchers were able to restore ATE distribution and sufficiently mitigate age-related local and systemic low-grade inflammation. As a result of the transfer, youthful systemic environments were restored and systemic rejuvenation took place in aged mice. Changes were both physical – assessed by endurance and grip strength tests – and immune-related – manifested in improved vaccination responses.

Dr. Noti and Dr. Eggel’s findings support the critical function of adipose tissue as a source contributing to accelerated aging and uncover the new role of eosinophils in sustaining adipose tissue homeostasis and thus, promoting healthy aging.

Because the age-related changes in adipose immune cell distribution were confirmed in human subjects, the latest study may have significant positive implications for the anti-aging medicine field when translated into clinical practice. Age-related frailty and immune decline may be halted and potentially even reversed as a result of this novel cell-based therapeutic approach.

“Our results indicate that the biological processes of aging and the associated functional impairments are more plastic than previously assumed,” Dr. Noti stated. “A future direction of our research will be to now leverage the gained knowledge for the establishment of targeted therapeutic approaches to promote and sustain healthy aging in humans,” his research partner Dr. Eggel concluded.

 

Natural Compound Promotes Healthy Aging

The seven human sirtuins (SIRT 1-7), or NAD-dependent deacetylases, have been strongly correlated with human longevity due to their connection with metabolic function, aging, and the development of age-related diseases. In recent years, the protein SIRT1 has received the most attention due to its influence on gene regulation, genomic stability, and energy metabolism, garnering interest among the scientific community as a potentially viable pharmacologic therapy for the prevention of several health conditions, including type 2 diabetes, obesity, cancer, as well as cardiovascular and neurodegenerative diseases.

Several compounds have been found to impact the activation of sirtuins, including resveratrol which can be found in red wine, peanuts, pistachios, certain fruits, and cocoa. In small amounts, resveratrol may be able to replicate the health benefits of the steroid hormone estrogen, known for regulating reproduction, protecting against certain age-related diseases such as metabolic syndrome and Alzheimer’s disease.

A new study conducted in the United Kingdom aimed to uncover the mechanisms underlying resveratrol’s health benefits, its association with sirtuin proteins, and its ability to protect against age-related diseases; the latest findings were published in Scientific Reports.

Resveratrol and Healthy Aging

Small amounts of resveratrol – commonly found in red wine, berries, and chocolate – may be able to replicate the beneficial effects of estrogen in preventing metabolic diseases and cognitive decline. Larger amounts, on the other hand, may have the opposite effect, according to the study’s authors.

By activating estrogen receptors, the compound in turn activates sirtuin proteins to exert its physiological effects. Sirtuin proteins play a significant role in the healthy aging process as they control mitochondrial biogenesis, promote DNA repair, and help regulate metabolic function. They are believed to protect the body against several age-related diseases and are thought to have excellent potential drug targets according to the scientific community; however, clinical applications of the proteins remain unclear. Even still, there remains a lack of understanding of how sirtuin signaling translates to increased healthspan in human beings.

Studying Sirtuin-Activating Compounds

Led by Dr. Henry Bayele, molecular biologist at the University College London, researchers conducted an in vitro study of human liver cells which exposed them to a variety of dietary compounds aimed at activating sirtuin proteins. Collectively known as dietary sirtuin-activating compounds (dSTACs),  resveratrol and isoflavones, such as daidzein, are natural activators in comparison with other synthetic compounds developed to spur sirtuin signaling. Researchers found that at low doses, resveratrol increased sirtuin signaling in cells by mimicking estrogen although, at high doses it actively reduced signaling.

“Numerous studies in animals have suggested that these proteins could prolong healthy lifespan by preventing or slowing disease onset,” Dr. Bayele told Medical News Today. “But developing effective drugs or dietary interventions has been frustrated by a lack of a common understanding of how exactly they work in the body’s cells.”

The study’s findings support the notion that small amounts of red wine can promote healthy aging as can other dietary components; Dr. Bayele reported that the compound present in licorice, isoliquiritigenin, is even more effective at activating sirtuins. His research supports the claim that dSTACs can be viewed as “plant estrogens”, benefiting human health by performing functions that estrogen would typically be responsible for.

Implications for Anti-Aging

Emerging evidence supportive of resveratrol’s benefits could lead to the development of alternatives to hormone replacement therapy – which can increase the risk of cardiometabolic disease – for menopause patients. However, further clinical studies are required to confirm whether individuals using dSTACs as estrogen substitutes to promote healthy aging display positive results.

“Regular low doses of resveratrol, such as through moderate consumption of red wine as part of a healthy diet, may be able to provide the benefits of estrogen,” Dr. Bayele explained. “This would apply to both men and women of all ages, but postmenopausal women may feel these benefits the most because they have lower estrogen reserves than men of a similar age.”

Dr. Bayele and his colleagues caution that the effects of dSTACs on cells in vitro found in their study may not reflect their effects in human subjects. For instance, the body may digest resveratrol compounds in the gut or metabolize them in the intestinal microbiota. If they do survive digestion intact, the absorption of the compounds into the bloodstream may be poor or the liver may break them down during digestion. Hence why additional study is needed to develop novel strategies for effectively delivering resveratrol for maximum benefit.