Tag Archives: gut

Parkinson’s Disease: Origins in the Gut?

Within the last few weeks, researchers at Mount Sinai have found strong correlations between Parkinson’s disease and the gut, confirming earlier studies that indicate the association.

A new genetic study demonstrates that several variants in the LRRK2 gene raise or lower risk not only for Parkinson’s, but also for Crohn’s disease: an inflammatory bowel disorder. The researchers identified a new functional risk variant, N2081D, which increases LRRK2’s kinase activity, in addition to a protective variant that inactivates lRRK2. The study’s researchers confirm that these findings may provide insight into underlying disease mechanisms, and point toward improved therapeutic approaches: LRRK2 inhibits being developed for Parkinson’s may help people with Crohn’s, while anti-inflammatory approaches could likewise benefit Parkinson’s patients.

Moreover, an earlier study published in Neurology, the official journal of the American Academy of Neurology, investigates the role of the vagus nerve in Parkinson’s disease–suggesting that a resection of the nerve might stop or delay the spreading of Parkinson’s disease, and providing further concrete evidence of the link between Parkinson’s and the gut.

Historically cited as the pneumogastric nerve, the theory suggests that the vagus nerve might serve as the channel for transporting the protein alpha-synuclein from stomach to brain, where it forms ‘telltale clumps in Parkinson’s sufferers.’

If accurate, the hypothesis points to a clear origin of the neurodegenerative brain disorder: the gut. Moreover, it would explain and confirm the critical importance of the enigmatic protein, whose exact role in Parkinson’s has previously not been well understood.  Perhaps most importantly, it would point to a potential way to block the development and progression of Parkinson’s: a surgical procedure known as a vagotomy, which is generally used in people with severe gastric ulcers, and involves cutting the vagus nerve in order to completely sever the ‘pathway from gut to brain.’

The objective of the published research was to examine whether vagotomy decreases the risk of Parkinson’s. Using comprehensive data from nationwide Swedish registers, the authors conducted a matched-cohort study of 9,430 vagotomized patients and 377,200 non-vagotomized patients. The researchers were aiming to find if the process of a vagotomy—in addition to a treatment for peptic ulcers—might lower the risk of Parkinson’s by blocking the route of alpha-synuclein to the brain.

After analyzing the data and assessing the subset of patients who received the most drastic version of the procedure, a truncal vagotomy—which removes the vagus nerve from contact with the liver, stomach, pancreas, gall bladder, small intestine, and proximal colon—they found that Parkinson’s disease was 22% less common than it was amongst people in the non-vagotomized comparison group.

While this study delivers clear epidemiological evidence to support the theory that Parkinson’s originates in the gut, previous studies further indicate that this may indeed be true. Alpha-synuclein protein clumps have been detected in the guts of patients with very early-onset Parkinson’s; in mice who had alpha-synuclein from the brains of human Parkinson’s patients implanted in their intestinal walls, researchers have seen movement of those proteins in the vagus nerve.

Our upcoming 26th Annual Spring Congress will focus on brain diseases and disorders, including the prevalence of Parkinson’s disease and related conditions. Our Module IV: Gastroenterology will also spotlight the gut-brain axis, and discuss the strong correlation between the gut microbiome and brain conditions.

Please follow and like us:

The Link Between Parkinson’s & Gut Bacteria

Recent findings have confirmed a long assumed, yet never officially proven, hypothesis regarding a functional link between the gut’s bacteria and the onset of Parkinson’s disease. While previous research has demonstrated strong correlations between the gut and the disease, no research has shown the exact relationship.

One of the world’s most prevalent neurodegenerative disorders, Parkinson’s affects approximately 1 million people in the United States. A progressive and chronic movement disorder, Parkinson’s involves the malfunction and ultimate death of the brain’s vital nerve cells: neurons. As the neurons that typically produce normal levels of dopamine—the chemical that communicates with the segment of the brain that controls coordination and movement—regularly decrease and dopamine levels lessen, a person becomes unable to control movement. Worsening symptoms include the gradual deterioration of motor symptoms: body tremors, bradykinesia/slowness of movement, rigidity, and severe postural instability.

The studies suggest a new, unprecedented way of treating the disease and its symptoms: targeting the gut, rather than the brain, and developing next-generation probiotics: a more sophisticated version than those readily available for purchase and consumption today.

Through conducting trials during which mice were fed certain short-chain fatty acids that are commonly produced by bacteria in the gut, in addition to actual samples of gut bacteria from human Parkinson’s patients and healthy human controls, the team found that the mice either exhibited symptoms, or did not produce symptoms, respectively. The team’s researchers expressed their hope in the possibility of the prescription of drugs that contain bacteria to prevent Parkinson’s, or treat the disease symptoms. Moreover, the studies imply that Parkinson’s is less related to hereditary genetics than environmental factors—including the onset of age.

At A4M, our overarching goal is to treat—and ultimately prevent—the onset of diseases associated with aging. Attend our upcoming events and learn about the advancement of technology and biomedical engineering, coupled with the most recent research & inquiries into methods that optimize the human aging process.
 
Be on the forefront of public health and healthcare. Better yourself, your practice, and your patients through our advanced education opportunities.

Please follow and like us:

Jill Carnahan, MD, ABFM, ABIHM: A Success Story

“Most physicians are not adequately trained to assess the underlying causes of complex, chronic disease, and to apply strategies such as nutrition, diet, and exercise to both treat and prevent those illnesses in their patients.”
Jill Carnahan, MD, ABFM, ABIHM

During her third year of medical school, at age 25, Dr. Jill Carnahan was forced to transition from the role of doctor to patient after being diagnosed with an aggressive form of breast cancer. While she returned to medical school after treatment, within the next six months, she was diagnosed with Crohn’s disease: likely a result of the chemotherapy’s toxic effect on the gut lining. Dr. Carnahan’s gastroenterologist at the time informed her that diet was unrelated to clinical outcomes. Moreover, not only would Dr. Carnahan require multiple future surgeries, but she also would never be completely cured. Dr. Carnahan was prescribed medications and drugs for the inflammation, but she received nothing to help alleviate or address her symptoms.

Refusing to believe that pharmaceuticals and surgery were her only sole options, Dr. Carnahan embarked upon an intensive study of dietary changes and nutrition, which would ultimately form her career trajectory and professional mission. After consulting with a naturopath, making major changes in her own diet, and seeking out the appropriate supplements, Dr. Carnahan is—more than 12 years later—both breast cancer free and healed from Crohn’s disease. Now, Dr. Carnahan knows that assessing and evaluating the triggers that contribute to sickness and disease—in addition to utilizing the least invasive treatment methods possible—is the reason that functional medicine is highly effective and beneficial.

Dr. Carnahan’s personal journey of resiliency and relentlessness have spurred her commitment to help patients achieve optimal health and wellness through the practice of functional medicine.  “More than ever before, I believe that the human body can regain health if given the right tools… and I am living proof!”

From September 14-16 in Chicago, Dr. Carnahan will speak at Module IV: A Metabolic & Functional Approach to Gastroenterology, along with a panel of other clinical experts—all of whom will discuss comprehensive functional and nutritional approaches to gastrointestinal dysfunction and disease. Faculty members will further discuss topics including the physiology and pathophysiology of gastrointestinal disorders, gut permeability, inflammatory bowel disease, celiac disease and gluten sensitivity, the gut-immune-brain connection, and other digestive and glandular disorders. Do not miss this core module, which delves into the root causes of chronic diseases and disorders—many of which begin in the gut.

Please follow and like us: