Category Archives: Anti-Aging Innovations

The Regenerative Medicine Market: Current State and Future Outlook

As the world continues to grapple with the COVID-19 pandemic, the importance of regenerative medicine, and its many facets ranging from vaccine development to novel therapeutics, is being highlighted. While the industry has been receiving increased attention from investment firms in recent years, the recent boost in financial support from governments across the globe as part of the novel coronavirus response is expected to further propel the market. Businesses based on regenerative medicine are experiencing a flood of cash and record valuations – all factors predicted to fuel the market surge in coming years.

Continue reading

PHD3 Loss, Fat Metabolism, and Exercise Endurance

Tolerance of exercise and endurance can both decrease with age and declining metabolic health yet physical activity remains a cornerstone of physical and mental health regardless of age. Enzyme systems have received increasing attention for their potential to reduce exercise fatigue and improve endurance by providing the body with access to energy reserves and optimizing their use. Sugars are the primary fuel of cellular processes however, when nutrients are scarce – such as in cases of starvation or extreme exertion – cells switch to breaking down fats for energy. At this time, the mechanisms behind the rewiring of cellular metabolic pathways in response to fluctuations in resource availability are poorly understood.

New research published earlier this month in Cell Metabolism suggests a surprising consequence when one such mechanism is turned off – an increased capacity for endurance exercise. Recently conducted by researchers from the Harvard Medical School, the study revealed that blocking the activity of a fat-regulating enzyme in the muscles of mice could lead to an increased capacity for endurance exercise

Boosting Exercise Endurance in Mice

Led by Marcia Haigis, professor of cell biology at Harvard Medical School, a team of researchers investigated the function of the enzyme prolyl hydroxylase 3 (PHD3) – which they believed played a role in regulating fat metabolism in certain cancers. The study’s authors investigated the impact of PHD3 inhibition in genetically modified mice by carrying out a series of endurance exercise experiments.

Under normal conditions, PHD3 chemically modifies the enzyme ACC2 which prevents fatty acids from entering mitochondria to be broken down into energy. The team of researchers found that blocking PHD3 production in mice resulted in dramatic improvements in fitness measures: mice lacking the PHD3 enzyme ran 40% longer and 50% farther on treadmills and had a higher VO2 max – indicating increased aerobic endurance – than control subjects.

After endurance experiments, the muscles of PHD3-deficient mice revealed heightened rates of fat metabolism and an altered fatty acid composition and metabolic profile. According to the authors, their findings held true in genetically modified mice demonstrating that PHD3 loss in muscle tissues may be sufficient to boost exercise capacity.

PHD3 Enzyme Regulates Metabolic Pathways

After performing a series of molecular analyses to detail precise molecular interactions allowing PHD3 to modify ACC2 and how its activity repressed by AMPK, Haigis and her team reported that PHD3 and AMPK, another enzyme, simultaneously control the activity of ACC2 to regulate fat metabolism depending on energy resource availability.

Their research identified the critical role of the enzyme prolyl hydroxylase 3 (PHD3) in sensing nutrient availability and regulating the ability of muscle cells to metabolize fats, revealing that when nutrients are abundant, PHD3 acts as a brake inhibiting unnecessary fat metabolism that is released during exercise. Whole body or skeletal muscle PHD3 loss enhances acute exercise capacity during endurance exercise experiments.

“The findings shed light on a key mechanism for how cells metabolize fuels and offer clues toward a better understanding of muscle function and fitness,” the authors wrote.

“Understanding this pathway and how our cells metabolize energy and fuels potentially has broad applications in biology, ranging from cancer control to exercise physiology,” senior author Haigis explained. Although, further research is needed to identify whether this pathway can be manipulated in humans to improve muscle function, in the treatment of various diseases, and to better understand how PHD3 inhibition improves exercise capacity.

The latest findings carry implications for a potential novel approach to enhancing exercise performance, treating muscle disorders, as well as developing therapeutic methods for certain cancers in which mutated cells express decreased levels of PHD3. At this time, whether there are any negative effects – including weight loss, blood sugar changes and other metabolic markers – associated with PHD3 loss remains unknown although, this will hopefully be elucidated by future research.

Reversing Age-Related Impairment and Immunity

While the average life-expectancy for humans continues to increase, a longer life span has been tied to an uptick in age-related disease and impairment across the globe. As a result of a declining immune system, the growing elderly population is more prone to infectious diseases – including influenza and COVID-19. Additionally, this group is commonly affected by age-related frailty, which has a significant negative impact on quality of life. The high level of care and involvement required to maintain the health of these patients has the potential to bear a growing burden on the healthcare system which is part of the reason underlying research efforts in the field of human longevity.

The current body of knowledge suggests the role of chronic low-grade inflammation in the biological aging process and development of age-related diseases; scientific evidence implicates that the presence of inflammation in the body accelerates aging. Hoping to uncover more information about additional factors that may contribute to an accelerated process and potential methods of reversing them, a team of researchers from the Department for BioMedical Research at the University of Bern conducted a study with findings published in Nature Metabolism.

Age-Related Frailty and Immunity

Under Bernese guidance, Dr. Mario Noti and Dr. Alexander Eggel aimed to identify new approaches to improving health-span in an ever-increasing aging population by focusing on adipose tissue eosinophils (ATEs) present in humans and mice. These immune cells found in visceral adipose tissue, otherwise known as belly fat, play an essential role in regulating inflammation and could be used to reverse aging processes; these cells are important in the control of obesity-related inflammation and metabolic disease as they are responsible for maintaining local immune homeostasis. Increasing age is tied to a decrease in eosinophils in adipose tissue and an increase in pro-inflammatory macrophages – turning belly fat into a source of pro-inflammatory activity.

Role of Eosinophils in Chronic Inflammation

The study’s authors demonstrated that visceral adipose tissue contributed to the development of chronic low-grade inflammation. They found that ATEs undergo major age-related changes in distribution and function associated with impaired adipose tissue homeostasis and systemic low-grade inflammation in human subjects as well as mice. However, exposure to a young systemic environment  was able to partially restore ATE distribution in aged subjects by reducing adipose tissue inflammation.

“In different experimental approaches, we were able to show that transfers of eosinophils from young mice into aged recipients resolved not only local but also systemic low-grade inflammation,” the researchers told ScienceDaily. ”In these experiments, we observed that transferred eosinophils were selectively homing into adipose tissue.”

Using an adoptive transfer or eosinophils from young mice to aged subjects, researchers were able to restore ATE distribution and sufficiently mitigate age-related local and systemic low-grade inflammation. As a result of the transfer, youthful systemic environments were restored and systemic rejuvenation took place in aged mice. Changes were both physical – assessed by endurance and grip strength tests – and immune-related – manifested in improved vaccination responses.

Dr. Noti and Dr. Eggel’s findings support the critical function of adipose tissue as a source contributing to accelerated aging and uncover the new role of eosinophils in sustaining adipose tissue homeostasis and thus, promoting healthy aging.

Because the age-related changes in adipose immune cell distribution were confirmed in human subjects, the latest study may have significant positive implications for the anti-aging medicine field when translated into clinical practice. Age-related frailty and immune decline may be halted and potentially even reversed as a result of this novel cell-based therapeutic approach.

“Our results indicate that the biological processes of aging and the associated functional impairments are more plastic than previously assumed,” Dr. Noti stated. “A future direction of our research will be to now leverage the gained knowledge for the establishment of targeted therapeutic approaches to promote and sustain healthy aging in humans,” his research partner Dr. Eggel concluded.